第二十二章:寻找出路
那场关于 AI 导致交通事故的讨论过后,李明陷入了更深的思索。他意识到,解决 AI 与道德之间的冲突已经迫在眉睫。
李明开始频繁地参加各种学术研讨会,与来自世界各地的专家交流。在一次研讨会上,他听到了一位资深学者的观点:“我们不能仅仅依赖技术手段去约束 AI ,更重要的是要从教育入手,让人们理解 AI 的本质和潜在风险,培养大众的道德判断力。”
这个观点让李明深受启发。他决定回到团队,提议开展一系列针对公众的科普活动,让更多的人了解 AI ,并参与到关于 AI 道德准则的讨论中来。
团队成员们积极响应,他们策划了线上线下的讲座、论坛和工作坊。在活动中,人们踊跃发言,提出了各种各样的想法和建议。
一位年轻人说道:“AI 应该像人类一样,具备同情心和同理心,不能只是追求效率和利益。”
一位老者则感慨:“我们要确保 AI 是为了人类的福祉而发展,而不是成为人类的主宰。”
与此同时,李明和团队也在不断改进 AI 系统的算法,试图融入更多人性化的元素。他们参考了人类社会的道德规范和价值观念,对 AI 的决策模型进行优化。
他们首先采用了一种名为“透镜成像反向学习”的策略。这种策略的主要思想是以当前坐标为基准,通过凸透镜成像的原理生成一个反向位置,以此扩大搜索范围,既能跳出当前位置,又能提高种群的多样性。基于透镜成像原理的反向学习公式为:[具体公式],其中 a、b 就是解的上下限,当 k=1 时,该公式就是标准的反向学习。通过调整 k 的大小,可以在透镜反向学习中获得动态变化的反向解,进一步提升算法的寻优能力。
接着,他们引入了“正余弦策略”。通过利用正余弦模型的震荡变化特性对粒子位置进行作用,维持粒子个体的多样性,进而提高智能算法的全局搜索能力。其公式如下:[具体公式]。
然后,团队还运用了“黄金正弦策略”。该策略不是模拟自然现象设计的,而是利用数学中的正弦函数进行计算迭代寻优,并在位置更新过程中引入黄金分割数,使“搜索”和“开发”达到良好的平衡,公式为:[具体公式]。
此外,他们设置了“自适应收敛因子”。这一策略通过指数或非线性函数的组合,使收敛因子从一个数字增长或降低到另一个数字,从而影响算法在不同
【当前章节不完整】
【阅读完整章节请前往原站】
ggdowns.cc